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Some Aspects of Stability and Numerical Dissipation
of the Finite-Difference Time-Domain (FDTD)
Technique Including Passive and
Active Lumped Elements

Werner Thiel and Linda P. B. Katetrellow, IEEE

Abstract—This paper presents a stability analysis of the chosen so that a stable discrete system results. In the literature,
extended finite-difference time-domain method including passive many different approaches have been reported. With a forward
and active devices. An explicit, implicit, and semi-implicit incor- Euler method, as described in [8], the state—space variables of
poration of lumped elements is investigated and the eigenvalues he | I’ i ’ in th i
of the resulting discrete system are discussed. With the under- tN€ lumped element can easily be updated in the nonlinear case
lying assumption that the domain is homogeneously loaded with without applying recursive methods for solving the nonlinear
lumped elements, stability criteria are derived on the basis of a system of equations. This explicit method can also provide a
T;T)'Is,an‘;ﬁétﬁo?”:Ug;?gg,?gc aPei‘ ;gr:ggug;“%% ﬁggg‘”gda fﬁglr/] simple interface between the FDTD grid and a circuit simulator
implici , iti i ved wi . . T
reactive devices are included. For an inductance, this numerical [6], which perfor.ms the calculat!on of the (?'rcu't of the, lumped
dissipation is characterized in detail and an equivalent circuit is €lement. As a disadvantage, this method is only applicable and
given. As an example, the impact on the quality @) factor of a remains stable for small time steps if the current and voltage of
cavity loaded with an inductance is shown and compared to the the device are located on different cells in the FDTD grid [8]. For
theoretical derivation. . . . an unconditionally stable method up to the Courant condition of

Index Terms—FDTD, integration techniques, lumped elements, the FDTD scheme, fully implicit [9] and semi-implicit [4], [10]
numerical dissipation, numerical stability, waveguide resonator. interfaces have been developed and successfully employed to
analyze active microwave circuits [9], [11]. However, the sta-
|. INTRODUCTION bility of the extended FDTD scheme has always been proven
HE finite-difference time-domain (FDTD) technique,based on simulation results and empirical approaches. There-

first proposed in [1], provides a very flexible numericafore’ theoretical studies do not exist and stability conditions for

method for solving linear and nonlinear electromagnetic prome different kind§ of temporal discretizations are not availab]e;.
lems. Since Maxwell's equations are solved in the time domain!n further studies performed on lumped elements, parasitic
on a spatial grid, nonlinear problems can easily be handled'fctances caused by the FDTD grid, which can seriously
comparison to frequency-domain-based methods. affect the behavior of a circuit in the m|II|meter—.vyave range,
In nonlinear circuits, active devices are often given by thef¥ere observed [11]. In the past, these parasitic reactances
large-signal equivalent circuit [2] and are included as a lump&$re characterized and correction procedures were suggested
element in the FDTD grid using usually two kind of interfaced111-[13]. _ ) ) ) -
i.e., the voltage—source [3] and the current—source [4] approachT "€ main goal of this paper is to provide stability con-
respectively. Asanalternative to using anequivalentcircuitforti§étions for explicit and implicit methods and to investigate
nonlinear device, ahybrid technique is proposedin [5][7], whelde existence of numerical dissipation by applying a fully
the solid-state device is modeled by afinite-difference method atigPlicit interface. All the considerations in this paper are
isincluded as a subsystem in the coarser FDTD grid. In this caBased on a plane-wave approach for the three-dimensional
the device is also treated as a lumped element in the FDTD gt&iD) Yee scheme. The derivation of the eigenvalues is based
and is updated synchronously with the FDTD time step. on the assumption that the domain is homogeneously loaded
However, the interface between the lumped element awdh lumped elements. In Section I, basic principles of an

FDTD grid, especially the temporal discretization, must beigenvalue analysis of a difference scheme are described and

. . . the eigenvalues for the one-dimensional Yee scheme loaded
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II. EXTENDED FDTD SCHEME polynomial:

In this section, the eigenvalues for a homogeneously loaded
FDTD grid are derived as a basis for the investigations in the )y [ yot2 _ i [ 21 =0 47 sin
following sections. If a plane wave propagatingzidirection 14+ecy 14ecy
is assumed, the discretized form of one-dimensional Maxwell’s

QC

equations according to Yee’s scheme is 1-—cota c +e
A7 A n—m-+1 n—m
n nt1/2 nt1/2 AR +eq * nz: 1+cg
E |n+ Eym _Hx|k+1/2_Hm|k—l/2 _Idevice
At B Az AzAzx cy %
n+1/2 n—1/2 n " —
NH“’|k+1/2 _Haz|k+1/2u:Ey|k+1_Ey|k 1 1+ey
At Az

where Iievice iS the current through the lumped element. Fovlylth the Courant number = At/(Az,/eu) referred to the

nloaded case. The degree of the polynon#léh) is equal to
an arbitrary nonlinear lumped element, the current through the

Y& number of elements of the vectdrandrn corresponds to the
device can be expressed by e

additional time levels for the electric fields, |~ to £, |2~

needed for the time discretization of the lumped element. To get
a stable discrete system, the magnitude of all eigenvalues has to
be less than one faf € [—«, «]. In the following sections, the
@) specific values for the constants, are taken into account.

eAx Az

Laevice = <E |n+1 Ey|ZvEy|Zlvay|llmEy|2> At

where f(z) represents a nonlinear functionan In the linear m

case, the current of the device is just a linear combination of the ) - o )
electric fields at previous time steps In this section, the stability of a lumped resistor is investigated

for different temporal discretization techniques. This problem

. RESISTOR

1 . . is related to an FDTD technique including lossy dielectrics. In
Lyevice = <C—1Ey|k +eoByli by 4 [15], a stability analysis was performed for the 3-D wave equa-
tion.
AxAz
+cn—1Ey|llc + any|g> w ©)) .
At A. Explicit (Forward Euler)

To perform a stability analysis for the nonlinear case, the non-In the explicit case, the current through the device depends
linear functionf(z) can be linearized at each time step. As gnly on the electric field of the previous time step and is given

matter of fact, the eigenvalues depend on time and global $¥-Ldevice = (Ay/R)E™ = ((cAzAz)/(At))coE™. Hence, all
bility analysis becomes more difficult. other coefficients,,, with m # 0 are zeroin (7). The magnitude

If the current of the lumped element is inserted in (1), a mu®f the eigenvalues of (7) is less than one if the Courant number
tilevel scheme depending on several previous time steps is gesatisfies the condition
duced. The latter can be easily transformed into a two-level 1
y v< 5\/4 — 2¢p. (8)

scheme by introducing the vector
. . B . AT If thls”mequahty is solved for the time stefit, the stability
uy = (Eylk,Hml E,; ,...,Ey|k) . (4) condition

k41/20
2
For the stability analysis, the finite-difference scheme is ex- At < \/<A9AZ“> - A22pe — AyAzp 9)
pressed in the Fourier domain by the discrete Fourier transform 4RAz 4RAz
(DFT) [14] is derived. The latter shows that the time step strongly depends
. 0o on the resistancé? and decreases if the resistance becomes
@(¢) = ¢ qyy, (5) small. On the other hand, the accuracy of that scheme is only
V27 kz; first order in timeO(At).

with ¢ € [, 7] being a normalized spatial wavenumber. How8- Fully Implicit (Backward Euler)
ever, this approach is only possible if a domain homogenouslyif a fully implicit method is applied to the resistor, the current
loaded with lumped elements is assumed. Finally, the differentg, ;.. = (Ay/R)E"™*! depends only on the electric field that

scheme can be written in the following form: is currently updated. In this case, only the coefficient is con-
sidered in polynomial (7) and all other coefficients are ignored.
Aw"t = Ba". (6) The evaluation of the eigenvalues leads to the stability condition

for the Courant number
For a stability analysis, the eigenvalues of the matix'B 1
have to be investigated. These are the roots of the following VS ovAat e (10)
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Solving again the inequality for the time stéy TABLE |
COURANT NUMBER LIMIT FOR SEVERAL SEMI-IMPLICIT METHODS
AyAzu 2 AyAzu AND ACCURACY IN TIME
At < \/< 1RAT ) + Az?pe + 1RAz 11) accuracy | cofc—y | cife—1 [ eafe—y [v <
o) |1 0 0 1

it turns out that the time step is less restricted than in the un- O(At) 0 1 0 1/v2
loaded case. Depending on the value of the resistance, this fully O(At) 0 0 1 1/2
implicit scheme admits a coarser time step, but is only first-order O(At) 1 1 0 V3/2
accurate. O(At) 1 1 1 1
C. Semi-Implicit (Leap Frog)

The semi-implicit case is of particular importance be- o ' ' ' ' ‘ '
cause it corresponds to a second-order accurate scher 04 A2 S
in time. The scheme is called semi-implicit if at least
the coefficientc_; is not zero. First, a current update 0.2 1 A : ]
equation including the current and previous electric field = (| 1
Lievice = (c_1 B + coE™)(eAxAz)/(At) is considered. &

A calculation of the eigenvalues according to polynomial (7) -0.2f §
gives the following stability condition for the Courant number ol N |
Vi

- 6 1 L o) 1 1 1 1

1 0.
< 2 /11 % 1 — 9. 12 35 3 25 -2 -15 -1 05 0 05
v< 2\/ + 2c_1 Co (12) —0)

This inequality shows that the scheme becomes more stableljlx(‘g,r1
c_1 > cp and the time step can be increased beyond the max= 1.
imum admissible time step of the unloaded case. d&=gr <

¢, the scheme behaves more explicitly and, as a consequenqhe,

the time step is restricted similarly to the explicit case and dé" ere@ '? tht?\ ca?atc):.llt?ncgt. F.O rthe captag: |t3nc_e, 3”.? ntat:ytlc edx-
pends on the resistanég If c_; = ¢, a second-order accurateP ©SS!0n for the stabliity criterion cannotbe derived. 10 this end,

scheme results, which is stable for a Courant number1. the eigenvalues of the discrete system can only be studied for

Some more possibilities for a semi-implicit incorporation ofl’xed Cpurant ”“_mb?m- The magnitude of the three eigen-
the device are given in Table I. The current values is shown in Fig. 1 for the Courant numbet= 1. The

system is unstable for all capacitan@&decause at least one
eArAz of the eigenvalues has a magnitude larger than one. For a small
At Courant number — 0, the magnitudes of the eigenvalues con-
(13) verge tolA;| = |A2] = 1 and|\s| = co. As a consequence, the
o ) difference scheme is only stable and a time si¢p> 0 only
now depends on the electric field up to the time step2. For  gyists, if the coefficient, < 1. Thatimplies that the ratio of the

all these values of the coefficients, listed in Table I, a fixed qig capacitance over the capacitance of the lumped element is
limit for the Courant number results and does not depend on %We at the maximum.

resistance. If time steps beyond- 2 are used or if the values of
the coefficients are changed, the maximum applicable Courgt
number will be a function of the resistance and, in most cases

an analytic expression for the eigenvalues cannot be derived. The implicit inclusion of a capacitor can be regarded as an
increase of the grid capacitance by the lumped capacitance be-

cause the temporal discretization is identical with the leap-frog

_ N N scheme and the domain is homogeneously loaded with the ca-
In contrast to the resistor, the stability condition for a cgyacitors. Inserting the coefficients

pacitor is of interest only for an explicit and implicit temporal

discretization because, in this case, the current is the temporal CAy

derivative of the electric field and, therefore, directly related to LT TOT ATAz (15)
the leap-frog scheme.

Eigenvalues in the complex plane associated with the explicit scheme

Lievice = (CflEn—i—l +COEn+ClEn_1 —|—02En_2)

Implicit

IV. CAPACITOR

in (7), the following stability criterion is deduced:
A. Explicit

.. ) v</14+c_1. 16
In the explicit case, the current through the capacitor depends - ! (16)

on the electric field on the time stepsandn — 1 and, therefore, 1 is exactly the Courant stability criterion for a domain with
the nonzero coefficients according to (3) are grid capacitance increased by a factof c_;, wherec_; rep-
CAy resents the ratio of the grid capacitancer /Ay over lumped
Co ==L = (14)  capacitance&?/Az per length.
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V. INDUCTOR C. Fully Implicit

Problems emerge in the case of a lumped inductor if a sta-n the fully implicit case, only the electric field at the current
bility analysis is based on (7) for the eigenvalues. Due to thigne stepn + 1 is taken into account. Therefore, the current
time integral of the electric field, an infinite number of coeffithrough the inductor has the form
cients are nonzero and this makes the computation of the eigen- AyAt
values nearly impossible. To this end, a state ve&igyic. is I =1 ice + —
introduced to avoid the infinite sum over all electric-field up- ) - ] )
dates. This approach reduces the degree of the polynomialf_t%"e current is specified according to (3), an alternative expres-

three. sion

EnTL (24)

AyAt n+1
L
The derivative of the device current depends on the electric m=0
field at the past time step only and can be formulated in the obtained, which is proposed for an implicit incorporation of
explicit case as the inductance in [10]. An evaluation of the eigenvalues gives

AyAt o - the following stability condition for this method
1
L v < SVA+n (26)
WhereIZf;}Ce corresponds to the device currdijt;.. of (1).

The eigenvalues of the discrete system yield a stability conditi¥f'eren is defined in (19). This inequality shows that the scheme
for the Courant number is stable even for > 1 depending on the value of the induc-

tance. In contrast to the explicit and semi-implicit method, the

A. EXp“C't Idevice = Enl (25)

In-l—l _m

device — “device +

v < % 4—7 (18) magnitude of two of the eigenvalues
1
' Al =1, A3l =— v - 27
with Al =1, [Az8] T4 ¢el[-mn]  (27)
(AR Ay) . e o dieainat
S S 2 (19) s less than one, which implies a numerical dissipation of the

" (LeAzAz) difference scheme. In Section VII, the effect of numerical dissi-
pation on microwave circuits is discussed in detail for a cavity

Resolving the inequality for the time step loaded with an induct
oaded with an inductance.

At < ! (20)

. ) In this section, the stability analysis described in Section Il is
it turns out that the time step has to be decreased by an amoyijied to nonlinear elements. In case of a nonlinear element,
that is proportional to the square root of the inductance. WitRe current of the device can be expressed by

this approach, a nondissipative difference scheme is obtained

VI. NONLINEAR LUMPED ELEMENTS

because the magnitude of all eigenvalues is one Tevice = f<Ey|Z+17Ey|ZvEy|Z_lv L Ey|i, Ey|2>
Azl =1 V(€ |[-mm (21) AzAz
Avzal [~ 7] A
whereAt satisfies the stability condition.
If this equation is linearized by
B. Semi-Implicit
. . . L n+1 n n—1
If a temporal average is employed for the electric field, g ldevice = <C—1AEy|k T AE [ + c AE [y
second-order accurate scheme is obtained. Hence, the current cArAs
in (1) becomes 4+t en1AE |} + c,,,AEy|2> T’
AyAt\ BT+ En 29
e RS ) 22) @9
evice L 2 .
with
where (I + T4 ...)/2 corresponds to the device current of
Ljevice Of (1). This semi-implicit difference scheme is stable for ¢ = B (30)
a Courant number < 1 independently of the value of the ulk E, 7

inductance. The magnitude of the eigenvalues are . . . .
9 9 at the operating point and only the differential values are con-

Ar2s=1 V(e[-mn]andv € [0,1] (23) sidered, the eigenvalues of the polynoni?gh) provide an esti-
mation of the local stability at this particular time step. Further-
so that, in this case, a nondissipative difference scheme alsomere, the coefficients; also depend on space and, therefore, a
sults. As a consequence, the scheme remains stable undefFthaier transform to eliminate the spatial numlsetannot be
stability condition of the unloaded case. performed. However, at each single grid point and at every time
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Req LElI

o—{  H—"WWA—0

semi-implicit

{

fully implicit

o————AAMA—

L

Fig. 2. Equivalent circuit for an inductance included by a fully implicit
method.

Fig. 3. Cavity in thel{'a-band loaded with an inductor.
step, a polynomial can be obtained if partially homogeneous
loaded lines are assumed in order to employ the analysis fc 1 ' T T T
the linear lumped elements. The eigenvalues yielding the mos 0.8

restrictive stability criterion are taken for an estimation of the 0.6 I
global stability. = 0.4 l
As an example, a diode with the current voltage characteristi=  0-2 'liu K [[MHIM LA {
B oH i PR i £ b il il
Idevice = ID (GU/UT - 1) (31) % -0.2 illll | it I{
S -04
is considered. The minimal differential resistancg = 0.6
(Ip/Ur)e?/Ur can be inserted in the stability criteria for the o3
resistance obtained in Section Il and leads to a condition fo -1 : , L l
the time step in the explicit, implicit, and semi-implicit cases. 0 L 2t. 3 4 5
1me 11 ns
VIl. NUMERICAL DISSIPATION Fig. 4. Voltage across the inductance for the semi-implicit scheme in the time
domain.

Although the inductance is a reactive device, the fully im-
plicit incorporation in the FDTD grid leads to eigenvalues with . o . :
a magnitude less than one. Hence, the electric field wil dgp_d the equivalent circuit is only valid for a small-signal anal-
crease exponentially in time. If a discrete Fourier magje=
acnAtTifkAz s inserted in the difference scheme, a comple
frequencyw = « — ¢b is obtained. Between the magnitude o
the eigenvalue and attenuation constaeiists the following
relationship:

As a numerical example in the 3-D case, a cavity in the
a-band loaded with an inductor, as shown in Fig. 3, is
analyzed to illustrate the impact of the numerical dissipation
on the @ factor. The waveguide resonator is discretized by
10x 10x 5 cells and the lumped inductance is placed in the
At — B\R (32) center of the cavity between two perfect electric conducting

pads with a size of 2 2 cells. At the boundary surface, the

For a large inductance, the attenuation conskelor the fully  resonator is excited with th&E;, mode and a delta function

implicitly included inductor can be approximated by in the time domain to cover a wide frequency band. A time
Ay step of 1.2 ps is used for the analysis and the signal is recorded
<m> for 38 ns. The factor of the loaded cavity is determined by
b= —-At - (33) performing a DFT of the time signal. Two resonances in the

5 .
<1 + M) cavity are considered: THEE;o; mode at 29.77 GHz and the
LeAzAz TEso; at 47.07 GHz. Due to the inductive load of 0.8953 nH,

Hence, the attenuation is quasi-proportional to the time stgk? resonance frequencies_ar_e shifted and are observed at 32.65
and, therefore, the parasitic dissipation can only be decread8d 51.48 GHz. The electric field across the inductance for the
by using small time steps in the FDTD simulation. According tB!ly implicit and the semi-implicit incorporation is shown in

Fig. 2, the dissipative inductor can be replaced by an equivaldi time domain in Figs. 4 and 5, respectively. As the semi-im-
circuit consisting of an inductance and a resistance modelediit method is nondissipative, the amplitude of the signal does
the semi-implicit scheme. In the equivalent circuit, the induct8ot decay in time and, hence, a infinig factor is achieved.

is a nondissipative element and only the resistance represéM®lying the fully implicit method instead, an exponential
the lossy part. If the eigenvalues of the serial connection of tRenuation of the signal is visible according to Fig. 5. The
inductor and resistor are investigated, it turns out that, in corpRectra of both signals around 51.5 GHz are given in Fig. 6.
parison to (27), the magnitude of the eigenvalues depends onYWRereas the semi-implicit approach leads to an infinitely small

wavenumbep. To this end, the resistance is also a function dfandwidth, the bandwidth for the fully implicit approach is
the wavenumber increased by the parasitic resistance and, as consequence, a

finite @ factor is obtained. On the other hand, the resonant
Ry = f(L, At,ﬁ) (84) frequencies of the two inclusion methods are slightly different
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voltage in Volt

o
I
o

time in ns

TABLE 1l
CAvITY LOADED WITH A FULLY IMPLICIT INCORPORATEDINDUCTANCE.
PARAMTERS FORDOUBLED INDUCTANCE AND HALVED TIME STEP

fr (GHz) | Af (MHz) [Q [ b(s]) [ Req ()
At/2

5124 [134 [ 383 ] 0.420 x 10° [ 57
2x L

51.03 [ 80 [ 638 ] 0.251 x 10° [ 109

impedance of the inductor at 51.48 GHz according to Table Il is
(4290 + 134)Q2.

Fig. 5. \oltage across the inductance for the fully implicit scheme in the time VIIl. CONCLUSION

domain.

5 db/div

50.5 51 51.5 52 52.5
frequency in GHz

Fig. 6. Spectra around 51.5 GHz for the semi and fully implicit scheme.

TABLE I
CAVITY LOADED WITH A FULLY IMPLICIT INCORPORATEDINDUCTANCE.
EVALUATION OF PARAMETERS AT TWO RESONANT FREQUENCIES FOR
L = 0.8953 nHAND At = 1.187 ps (ATTENUATION CONSTANT: b = 7 f,./ Q)

fr (GHz) [ Af (MHz) [ Q b (s7T) | Req ()
32.65 274 118 | 0.867 x 107 | 134
51.48 274 188 | 0.867 x 10° | 134

because of their different accuracy orders. To this reason,

In this paper, a stability analysis of the extended FDTD
method including lumped elements has been presented. All
calculations are based on a plane-wave approach and on the
assumption that the whole domain is homogeneously loaded.
Stability conditions for the implicit and explicit methods were
derived for a resistor, an inductor, and a capacitor. An eigen-
value analysis of the fully implicitly incorporated inductance
showed the existence of a parasitic resistance. The impact on
the electromagnetic behavior of microwave circuits has been
demonstrated and validated on the basis of a cavity in the
Ka-band. To this end, it turns out that the fully implicit ap-
proach, corresponding to the forward Euler applied to the state
variables of the lumped element, is not only first-order accurate,
but also dissipative. Finally, the trapezoidal integration method
has proven to be a suitable semi-implicit second-order scheme
for the incorporation of a lumped element into the FDTD.
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