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Some Aspects of Stability and Numerical Dissipation
of the Finite-Difference Time-Domain (FDTD)

Technique Including Passive and
Active Lumped Elements

Werner Thiel and Linda P. B. Katehi, Fellow, IEEE

Abstract—This paper presents a stability analysis of the
extended finite-difference time-domain method including passive
and active devices. An explicit, implicit, and semi-implicit incor-
poration of lumped elements is investigated and the eigenvalues
of the resulting discrete system are discussed. With the under-
lying assumption that the domain is homogeneously loaded with
lumped elements, stability criteria are derived on the basis of a
resistance, a conductance, and an inductance. Applying a fully
implicit method, a parasitic resistance can be observed when
reactive devices are included. For an inductance, this numerical
dissipation is characterized in detail and an equivalent circuit is
given. As an example, the impact on the quality ( ) factor of a
cavity loaded with an inductance is shown and compared to the
theoretical derivation.

Index Terms—FDTD, integration techniques, lumped elements,
numerical dissipation, numerical stability, waveguide resonator.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) technique,
first proposed in [1], provides a very flexible numerical

method for solving linear and nonlinear electromagnetic prob-
lems. Since Maxwell’s equations are solved in the time domain
on a spatial grid, nonlinear problems can easily be handled in
comparison to frequency-domain-based methods.

In nonlinear circuits, active devices are often given by their
large-signal equivalent circuit [2] and are included as a lumped
element in the FDTD grid using usually two kind of interfaces,
i.e., the voltage–source [3] and the current–source [4] approach,
respectively.Asanalternativetousinganequivalentcircuit for the
nonlineardevice,ahybrid technique isproposed in [5]–[7],where
thesolid-statedeviceismodeledbyafinite-differencemethodand
is included as a subsystem in the coarser FDTD grid. In this case,
the device is also treated as a lumped element in the FDTD grid
and is updated synchronously with the FDTD time step.

However, the interface between the lumped element and
FDTD grid, especially the temporal discretization, must be
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chosen so that a stable discrete system results. In the literature,
many different approaches have been reported. With a forward
Euler method, as described in [8], the state–space variables of
the lumped element can easily be updated in the nonlinear case
without applying recursive methods for solving the nonlinear
system of equations. This explicit method can also provide a
simple interface between the FDTD grid and a circuit simulator
[6], which performs the calculation of the circuit of the lumped
element. As a disadvantage, this method is only applicable and
remains stable for small time steps if the current and voltage of
the device are located on different cells in the FDTD grid [8]. For
an unconditionally stable method up to the Courant condition of
the FDTD scheme, fully implicit [9] and semi-implicit [4], [10]
interfaces have been developed and successfully employed to
analyze active microwave circuits [9], [11]. However, the sta-
bility of the extended FDTD scheme has always been proven
based on simulation results and empirical approaches. There-
fore, theoretical studies do not exist and stability conditions for
the different kinds of temporal discretizations are not available.

In further studies performed on lumped elements, parasitic
reactances caused by the FDTD grid, which can seriously
affect the behavior of a circuit in the millimeter-wave range,
were observed [11]. In the past, these parasitic reactances
were characterized and correction procedures were suggested
[11]–[13].

The main goal of this paper is to provide stability con-
ditions for explicit and implicit methods and to investigate
the existence of numerical dissipation by applying a fully
implicit interface. All the considerations in this paper are
based on a plane-wave approach for the three-dimensional
(3-D) Yee scheme. The derivation of the eigenvalues is based
on the assumption that the domain is homogeneously loaded
with lumped elements. In Section II, basic principles of an
eigenvalue analysis of a difference scheme are described and
the eigenvalues for the one-dimensional Yee scheme loaded
with an arbitrary linear lumped element are given. This study
concentrates on the first-order fully implicit, second-order
semi-implicit, and first-order explicit methods and gives a
stability analysis for a resistor, a conductor, and an inductor in
Sections III–V, respectively. Finally in Section VII, a lossless
cavity loaded with an inductance is chosen to demonstrate the
existence of a parasitic resistance due to the dissipation effect
that the numerical analysis showed.
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II. EXTENDED FDTD SCHEME

In this section, the eigenvalues for a homogeneously loaded
FDTD grid are derived as a basis for the investigations in the
following sections. If a plane wave propagating in-direction
is assumed, the discretized form of one-dimensional Maxwell’s
equations according to Yee’s scheme is

(1)

where is the current through the lumped element. For
an arbitrary nonlinear lumped element, the current through the
device can be expressed by

(2)

where represents a nonlinear function in. In the linear
case, the current of the device is just a linear combination of the
electric fields at previous time steps

(3)

To perform a stability analysis for the nonlinear case, the non-
linear function can be linearized at each time step. As a
matter of fact, the eigenvalues depend on time and global sta-
bility analysis becomes more difficult.

If the current of the lumped element is inserted in (1), a mul-
tilevel scheme depending on several previous time steps is de-
duced. The latter can be easily transformed into a two-level
scheme by introducing the vector

(4)

For the stability analysis, the finite-difference scheme is ex-
pressed in the Fourier domain by the discrete Fourier transform
(DFT) [14]

(5)

with being a normalized spatial wavenumber. How-
ever, this approach is only possible if a domain homogenously
loaded with lumped elements is assumed. Finally, the difference
scheme can be written in the following form:

(6)

For a stability analysis, the eigenvalues of the matrix
have to be investigated. These are the roots of the following

polynomial:

(7)

with the Courant number referred to the
unloaded case. The degree of the polynomial is equal to
the number of elements of the vectorand corresponds to the
additional time levels for the electric field ( to )
needed for the time discretization of the lumped element. To get
a stable discrete system, the magnitude of all eigenvalues has to
be less than one for . In the following sections, the
specific values for the constants are taken into account.

III. RESISTOR

In this section, the stability of a lumped resistor is investigated
for different temporal discretization techniques. This problem
is related to an FDTD technique including lossy dielectrics. In
[15], a stability analysis was performed for the 3-D wave equa-
tion.

A. Explicit (Forward Euler)

In the explicit case, the current through the device depends
only on the electric field of the previous time step and is given
by . Hence, all
other coefficients with are zero in (7). The magnitude
of the eigenvalues of (7) is less than one if the Courant number

satisfies the condition

(8)

If this inequality is solved for the time step , the stability
condition

(9)

is derived. The latter shows that the time step strongly depends
on the resistance and decreases if the resistance becomes
small. On the other hand, the accuracy of that scheme is only
first order in time .

B. Fully Implicit (Backward Euler)

If a fully implicit method is applied to the resistor, the current
depends only on the electric field that

is currently updated. In this case, only the coefficient is con-
sidered in polynomial (7) and all other coefficients are ignored.
The evaluation of the eigenvalues leads to the stability condition
for the Courant number

(10)
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Solving again the inequality for the time step

(11)

it turns out that the time step is less restricted than in the un-
loaded case. Depending on the value of the resistance, this fully
implicit scheme admits a coarser time step, but is only first-order
accurate.

C. Semi-Implicit (Leap Frog)

The semi-implicit case is of particular importance be-
cause it corresponds to a second-order accurate scheme
in time. The scheme is called semi-implicit if at least
the coefficient is not zero. First, a current update
equation including the current and previous electric field

is considered.
A calculation of the eigenvalues according to polynomial (7)
gives the following stability condition for the Courant number

:

(12)

This inequality shows that the scheme becomes more stable for
and the time step can be increased beyond the max-

imum admissible time step of the unloaded case. For
, the scheme behaves more explicitly and, as a consequence,

the time step is restricted similarly to the explicit case and de-
pends on the resistance. If , a second-order accurate
scheme results, which is stable for a Courant number .

Some more possibilities for a semi-implicit incorporation of
the device are given in Table I. The current

(13)

now depends on the electric field up to the time step . For
all these values of the coefficients listed in Table I, a fixed
limit for the Courant number results and does not depend on the
resistance. If time steps beyond are used or if the values of
the coefficients are changed, the maximum applicable Courant
number will be a function of the resistance and, in most cases,
an analytic expression for the eigenvalues cannot be derived.

IV. CAPACITOR

In contrast to the resistor, the stability condition for a ca-
pacitor is of interest only for an explicit and implicit temporal
discretization because, in this case, the current is the temporal
derivative of the electric field and, therefore, directly related to
the leap-frog scheme.

A. Explicit

In the explicit case, the current through the capacitor depends
on the electric field on the time stepsand and, therefore,
the nonzero coefficients according to (3) are

(14)

TABLE I
COURANT NUMBER LIMIT FOR SEVERAL SEMI-IMPLICIT METHODS

AND ACCURACY IN TIME

Fig. 1. Eigenvalues in the complex plane associated with the explicit scheme
� = 1.

where is the capacitance. For the capacitance, an analytic ex-
pression for the stability criterion cannot be derived. To this end,
the eigenvalues of the discrete system can only be studied for
fixed Courant numbers. The magnitude of the three eigen-
values is shown in Fig. 1 for the Courant number . The
system is unstable for all capacitancesbecause at least one
of the eigenvalues has a magnitude larger than one. For a small
Courant number , the magnitudes of the eigenvalues con-
verge to and . As a consequence, the
difference scheme is only stable and a time step only
exists, if the coefficient . That implies that the ratio of the
grid capacitance over the capacitance of the lumped element is
one at the maximum.

B. Implicit

The implicit inclusion of a capacitor can be regarded as an
increase of the grid capacitance by the lumped capacitance be-
cause the temporal discretization is identical with the leap-frog
scheme and the domain is homogeneously loaded with the ca-
pacitors. Inserting the coefficients

(15)

in (7), the following stability criterion is deduced:

(16)

This is exactly the Courant stability criterion for a domain with
grid capacitance increased by a factor , where rep-
resents the ratio of the grid capacitance over lumped
capacitance per length.
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V. INDUCTOR

Problems emerge in the case of a lumped inductor if a sta-
bility analysis is based on (7) for the eigenvalues. Due to the
time integral of the electric field, an infinite number of coeffi-
cients are nonzero and this makes the computation of the eigen-
values nearly impossible. To this end, a state vector is
introduced to avoid the infinite sum over all electric-field up-
dates. This approach reduces the degree of the polynomial to
three.

A. Explicit

The derivative of the device current depends on the electric
field at the past time step only and can be formulated in the
explicit case as

(17)

where corresponds to the device current of (1).
The eigenvalues of the discrete system yield a stability condition
for the Courant number

(18)

with

(19)

Resolving the inequality for the time step

(20)

it turns out that the time step has to be decreased by an amount
that is proportional to the square root of the inductance. With
this approach, a nondissipative difference scheme is obtained
because the magnitude of all eigenvalues is one

(21)

where satisfies the stability condition.

B. Semi-Implicit

If a temporal average is employed for the electric field, a
second-order accurate scheme is obtained. Hence, the current
in (1) becomes

(22)

where corresponds to the device current
of (1). This semi-implicit difference scheme is stable for

a Courant number independently of the value of the
inductance. The magnitude of the eigenvalues are

and (23)

so that, in this case, a nondissipative difference scheme also re-
sults. As a consequence, the scheme remains stable under the
stability condition of the unloaded case.

C. Fully Implicit

In the fully implicit case, only the electric field at the current
time step is taken into account. Therefore, the current
through the inductor has the form

(24)

If the current is specified according to (3), an alternative expres-
sion

(25)

is obtained, which is proposed for an implicit incorporation of
the inductance in [10]. An evaluation of the eigenvalues gives
the following stability condition for this method

(26)

where is defined in (19). This inequality shows that the scheme
is stable even for depending on the value of the induc-
tance. In contrast to the explicit and semi-implicit method, the
magnitude of two of the eigenvalues

(27)

is less than one, which implies a numerical dissipation of the
difference scheme. In Section VII, the effect of numerical dissi-
pation on microwave circuits is discussed in detail for a cavity
loaded with an inductance.

VI. NONLINEAR LUMPED ELEMENTS

In this section, the stability analysis described in Section II is
applied to nonlinear elements. In case of a nonlinear element,
the current of the device can be expressed by

(28)

If this equation is linearized by

(29)

with

(30)

at the operating point and only the differential values are con-
sidered, the eigenvalues of the polynomial provide an esti-
mation of the local stability at this particular time step. Further-
more, the coefficients also depend on space and, therefore, a
Fourier transform to eliminate the spatial numbercannot be
performed. However, at each single grid point and at every time
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Fig. 2. Equivalent circuit for an inductance included by a fully implicit
method.

step, a polynomial can be obtained if partially homogeneous
loaded lines are assumed in order to employ the analysis for
the linear lumped elements. The eigenvalues yielding the most
restrictive stability criterion are taken for an estimation of the
global stability.

As an example, a diode with the current voltage characteristic

(31)

is considered. The minimal differential resistance
can be inserted in the stability criteria for the

resistance obtained in Section III and leads to a condition for
the time step in the explicit, implicit, and semi-implicit cases.

VII. N UMERICAL DISSIPATION

Although the inductance is a reactive device, the fully im-
plicit incorporation in the FDTD grid leads to eigenvalues with
a magnitude less than one. Hence, the electric field will de-
crease exponentially in time. If a discrete Fourier mode

is inserted in the difference scheme, a complex
frequency is obtained. Between the magnitude of
the eigenvalue and attenuation constantexists the following
relationship:

(32)

For a large inductance, the attenuation constantfor the fully
implicitly included inductor can be approximated by

(33)

Hence, the attenuation is quasi-proportional to the time step
and, therefore, the parasitic dissipation can only be decreased
by using small time steps in the FDTD simulation. According to
Fig. 2, the dissipative inductor can be replaced by an equivalent
circuit consisting of an inductance and a resistance modeled by
the semi-implicit scheme. In the equivalent circuit, the inductor
is a nondissipative element and only the resistance represents
the lossy part. If the eigenvalues of the serial connection of the
inductor and resistor are investigated, it turns out that, in com-
parison to (27), the magnitude of the eigenvalues depends on the
wavenumber . To this end, the resistance is also a function of
the wavenumber

(34)

Fig. 3. Cavity in theKa-band loaded with an inductor.

Fig. 4. Voltage across the inductance for the semi-implicit scheme in the time
domain.

and the equivalent circuit is only valid for a small-signal anal-
ysis.

As a numerical example in the 3-D case, a cavity in the
-band loaded with an inductor, as shown in Fig. 3, is

analyzed to illustrate the impact of the numerical dissipation
on the factor. The waveguide resonator is discretized by
10 10 5 cells and the lumped inductance is placed in the
center of the cavity between two perfect electric conducting
pads with a size of 2 2 cells. At the boundary surface, the
resonator is excited with the mode and a delta function
in the time domain to cover a wide frequency band. A time
step of 1.2 ps is used for the analysis and the signal is recorded
for 38 ns. The factor of the loaded cavity is determined by
performing a DFT of the time signal. Two resonances in the
cavity are considered: The mode at 29.77 GHz and the

at 47.07 GHz. Due to the inductive load of 0.8953 nH,
the resonance frequencies are shifted and are observed at 32.65
and 51.48 GHz. The electric field across the inductance for the
fully implicit and the semi-implicit incorporation is shown in
the time domain in Figs. 4 and 5, respectively. As the semi-im-
plicit method is nondissipative, the amplitude of the signal does
not decay in time and, hence, a infinite factor is achieved.
Applying the fully implicit method instead, an exponential
attenuation of the signal is visible according to Fig. 5. The
spectra of both signals around 51.5 GHz are given in Fig. 6.
Whereas the semi-implicit approach leads to an infinitely small
bandwidth, the bandwidth for the fully implicit approach is
increased by the parasitic resistance and, as consequence, a
finite factor is obtained. On the other hand, the resonant
frequencies of the two inclusion methods are slightly different
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Fig. 5. Voltage across the inductance for the fully implicit scheme in the time
domain.

Fig. 6. Spectra around 51.5 GHz for the semi and fully implicit scheme.

TABLE II
CAVITY LOADED WITH A FULLY IMPLICIT INCORPORATEDINDUCTANCE.
EVALUATION OF PARAMETERS AT TWO RESONANT FREQUENCIES FOR

L = 0:8953 nH AND �t = 1:187 ps (ATTENUATION CONSTANT: b = �f =Q)

because of their different accuracy orders. To this reason, the
equivalent inductance in Fig. 2 is, like the equivalent resistance,
a function of the time step, inductance, and wavenumber.
In Table II, the attenuation constant, equivalent resistance

, and other evaluated parameters of the cavity are listed for
the two frequencies. Since the eigenvalues given in (27) are
independent of the wavenumber, the attenuation constantis
also independent of the frequency (confirmed in Table II). At
both frequencies, the numerical dissipation corresponds to an
equivalent resistance of 134.

In a further simulation, the time step is divided by two and
the change in the attenuation constant is compared to the ana-
lytic expression (2). As expected, the attenuation constant given
in Table III is also divided by two. Table III also shows the
attenuation for the case of a double inductance. The attenua-
tion constant decreases and a higherfactor is achieved. If
the complex impedance of the inductor is considered, the resis-
tive part comes in the range of the reactive part of the complex
impedance for large time steps and small inductances; e.g., the

TABLE III
CAVITY LOADED WITH A FULLY IMPLICIT INCORPORATEDINDUCTANCE.

PARAMTERS FORDOUBLED INDUCTANCE AND HALVED TIME STEP

impedance of the inductor at 51.48 GHz according to Table II is
.

VIII. C ONCLUSION

In this paper, a stability analysis of the extended FDTD
method including lumped elements has been presented. All
calculations are based on a plane-wave approach and on the
assumption that the whole domain is homogeneously loaded.
Stability conditions for the implicit and explicit methods were
derived for a resistor, an inductor, and a capacitor. An eigen-
value analysis of the fully implicitly incorporated inductance
showed the existence of a parasitic resistance. The impact on
the electromagnetic behavior of microwave circuits has been
demonstrated and validated on the basis of a cavity in the

-band. To this end, it turns out that the fully implicit ap-
proach, corresponding to the forward Euler applied to the state
variables of the lumped element, is not only first-order accurate,
but also dissipative. Finally, the trapezoidal integration method
has proven to be a suitable semi-implicit second-order scheme
for the incorporation of a lumped element into the FDTD.
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